Variation of the Discrete Eigenvalues of Normal Operators
نویسنده
چکیده
The Hooman{Wielandt inequality which gives a bound for the distance between the spectra of two normal matrices, is generalized to normal operators A; B on a separable Hilbert space, such that A ? B is Hilbert{Schmidt.
منابع مشابه
-
We used Wick’s normal-ordering technique, squeezed creation and annihilation operators, and a variation method, to find the eigenvalues of the general pure ?x2m potential. Numerical results for low-lying energy levels of pure quadratic, quartic, sextic, octic and decatic potentials, for different values of ? were obtained. Some interesting features of these energy levels are explained.
متن کاملLocalization of Eigenvalues in Small Specified Regions of Complex Plane by State Feedback Matrix
This paper is concerned with the problem of designing discrete-time control systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary similarity operations we find a state feedback which assigns the eigenvalues inside a circle with center and radius. This new algorithm ca...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کامل